Physical Origin of GeV emission in the early phase from GRB 170405A:

clue from emission onsets with multi-wavelength observations

Makoto Arimoto (Kanazawa University),

Katsuaki Asano (ICRR/Univ. of Tokyo)

on behalf of the Fermi-LAT collaboration

17th, October 2018

Outline

- Introduction: GeV emission from GRBs
 - ✓ Delayed emission
 - ✓ Extended emission
- GRB 170405A
 - ✓ Lightcurve
 - ✓ Spectrum
- Discussion
 - Bulk Lorentz factor
 - Synchrotron emission from the forward shock ?
- Summary

Anatomy of Gamma-ray bursts

What causes the GeV emission?

- Synchrotron emission in the forward shock?
 - ✓ Ghisellini+2010, Kumar+2010
- Inverse Compton (IC) emission in the internal shock?
 - ✓ Razzaque+ 2004
- IC emission in the reverse'sh can easily explain both
 - ✓ Granot & Guetta 2003
- Hadronic emission?
 - ✓ Dermer+ 2003

- the delayed emission
- the extended emission

GRB 170405A: Prompt emission

- Simultaneous detection w/ Swift
- z = 3.51 (GCN #20990)

Few GeV photons (> 1 GeV)

Extended emission/Afterglow

Spectral Energy Distribution

Bulk Lorentz factor from opacity

From the pair production opacity

Variability timescale [s]

Ackermann+2011

Optical onset from the forward shock scenario ~200 s

$$t_{onset} = \left[\frac{3E_{FS}(1+z)^3}{32\pi n_{ISM} m_p c^5 \Gamma^8} \right]^{1/3}$$

- $E_{FS} = 3 \times 10^{54} \, \eta^{-1} \, \text{erg}$
- $n_{ISM} = 1 \text{ cm}^{-3}$
- z = 3.51

If $\Gamma \sim$ 370, $t_{onset} \sim$ 200 s.

 $F_{\nu} \sim 50 \text{ mJy}$ for adiabatic jet with $\varepsilon_{\rm e}$ = $\varepsilon_{\rm B}$ = 0.01

Optical emission originates from the forward shock

Physical Origin

Physical Origin

Summary

- Optical-X-ray-GeV observation for GRB170405A shows
 - ✓ Different time onsets in the optical and GeV bands
 - √ High-energy cutoff appears in the prompt phase
 - \checkmark Γ_{max} is \sim 370, which can reasonably explain the *optical* onset, which is caused by the external forward shock
 - ✓ Delayed GeV emission is not likely to be the external forward shock
- Multi-wavelength observation is a key to understanding the emission mechanism of GeV emission
 - ✓ After Fermi10, we need to be more active for multiwavelength campaign.